feat: implement SQLite-inspired transaction model with reader-writer locks

This commit is contained in:
Jeremy Tregunna 2025-04-20 00:08:16 -06:00
parent 5dbcc0d54e
commit 72007886f7
Signed by: jer
GPG Key ID: 1278B36BA6F5D5E4
10 changed files with 1790 additions and 108 deletions

22
TODO.md
View File

@ -121,17 +121,17 @@ This document outlines the implementation tasks for the Go Storage Engine, organ
- [x] Add efficient seeking capabilities - [x] Add efficient seeking capabilities
- [x] Implement proper cleanup for resources - [x] Implement proper cleanup for resources
- [ ] Implement SQLite-inspired reader-writer concurrency - [x] Implement SQLite-inspired reader-writer concurrency
- [ ] Add reader-writer lock for basic isolation - [x] Add reader-writer lock for basic isolation
- [ ] Implement WAL-based reads during active write transactions - [x] Implement WAL-based reads during active write transactions
- [ ] Design clean API for transaction handling - [x] Design clean API for transaction handling
- [ ] Test concurrent read/write operations - [x] Test concurrent read/write operations
- [ ] Implement atomic batch operations - [x] Implement atomic batch operations
- [ ] Create batch data structure for multiple operations - [x] Create batch data structure for multiple operations
- [ ] Implement atomic batch commit to WAL - [x] Implement atomic batch commit to WAL
- [ ] Add crash recovery for batches - [x] Add crash recovery for batches
- [ ] Design extensible interfaces for future transaction support - [x] Design extensible interfaces for future transaction support
- [ ] Add basic statistics and metrics - [ ] Add basic statistics and metrics
- [ ] Implement counters for operations - [ ] Implement counters for operations
@ -186,7 +186,7 @@ This document outlines the implementation tasks for the Go Storage Engine, organ
- [ ] `Delete(ctx context.Context, key []byte, opts ...WriteOption) error` - [ ] `Delete(ctx context.Context, key []byte, opts ...WriteOption) error`
- [ ] `Batch(ctx context.Context, ops []Operation, opts ...WriteOption) error` - [ ] `Batch(ctx context.Context, ops []Operation, opts ...WriteOption) error`
- [ ] `NewIterator(opts IteratorOptions) Iterator` - [ ] `NewIterator(opts IteratorOptions) Iterator`
- [ ] `BeginTransaction(readOnly bool) (Transaction, error)` - [x] `BeginTransaction(readOnly bool) (Transaction, error)`
- [ ] `Close() error` - [ ] `Close() error`
- [ ] Implement error types - [ ] Implement error types

View File

@ -57,8 +57,9 @@ type Engine struct {
closed atomic.Bool closed atomic.Bool
// Concurrency control // Concurrency control
mu sync.RWMutex mu sync.RWMutex // Main lock for engine state
flushMu sync.Mutex flushMu sync.Mutex // Lock for flushing operations
txLock sync.RWMutex // Lock for transaction isolation
} }
// NewEngine creates a new storage engine // NewEngine creates a new storage engine
@ -520,6 +521,82 @@ func (e *Engine) loadSSTables() error {
return nil return nil
} }
// GetRWLock returns the transaction lock for this engine
func (e *Engine) GetRWLock() *sync.RWMutex {
return &e.txLock
}
// ApplyBatch atomically applies a batch of operations
func (e *Engine) ApplyBatch(entries []*wal.Entry) error {
e.mu.Lock()
defer e.mu.Unlock()
if e.closed.Load() {
return ErrEngineClosed
}
// Append batch to WAL
startSeqNum, err := e.wal.AppendBatch(entries)
if err != nil {
return fmt.Errorf("failed to append batch to WAL: %w", err)
}
// Apply each entry to the MemTable
for i, entry := range entries {
seqNum := startSeqNum + uint64(i)
switch entry.Type {
case wal.OpTypePut:
e.memTablePool.Put(entry.Key, entry.Value, seqNum)
case wal.OpTypeDelete:
e.memTablePool.Delete(entry.Key, seqNum)
// If compaction manager exists, also track this tombstone
if e.compactionMgr != nil {
e.compactionMgr.TrackTombstone(entry.Key)
}
}
e.lastSeqNum = seqNum
}
// Check if MemTable needs to be flushed
if e.memTablePool.IsFlushNeeded() {
if err := e.scheduleFlush(); err != nil {
return fmt.Errorf("failed to schedule flush: %w", err)
}
}
return nil
}
// GetIterator returns an iterator over the entire keyspace
func (e *Engine) GetIterator() (Iterator, error) {
e.mu.RLock()
defer e.mu.RUnlock()
if e.closed.Load() {
return nil, ErrEngineClosed
}
// Create a hierarchical iterator that combines all sources
return newHierarchicalIterator(e), nil
}
// GetRangeIterator returns an iterator limited to a specific key range
func (e *Engine) GetRangeIterator(startKey, endKey []byte) (Iterator, error) {
e.mu.RLock()
defer e.mu.RUnlock()
if e.closed.Load() {
return nil, ErrEngineClosed
}
// Create a hierarchical iterator with range bounds
iter := newHierarchicalIterator(e)
iter.SetBounds(startKey, endKey)
return iter, nil
}
// Close closes the storage engine // Close closes the storage engine
func (e *Engine) Close() error { func (e *Engine) Close() error {
// First set the closed flag - use atomic operation to prevent race conditions // First set the closed flag - use atomic operation to prevent race conditions

View File

@ -250,6 +250,9 @@ func TestEngine_GetIterator(t *testing.T) {
{"d", "4"}, {"d", "4"},
} }
// Need to seek to first position
rangeIter.SeekToFirst()
// Now test the range iterator // Now test the range iterator
i = 0 i = 0
for rangeIter.Valid() { for rangeIter.Valid() {

View File

@ -5,7 +5,6 @@ import (
"container/heap" "container/heap"
"sync" "sync"
"git.canoozie.net/jer/go-storage/pkg/iterator"
"git.canoozie.net/jer/go-storage/pkg/memtable" "git.canoozie.net/jer/go-storage/pkg/memtable"
"git.canoozie.net/jer/go-storage/pkg/sstable" "git.canoozie.net/jer/go-storage/pkg/sstable"
) )
@ -521,92 +520,290 @@ func (m *MergedIterator) advanceHeap() {
} }
} }
// GetIterator returns an iterator over the entire database // newHierarchicalIterator creates a new hierarchical iterator for the engine
func (e *Engine) GetIterator() (Iterator, error) { func newHierarchicalIterator(e *Engine) *boundedIterator {
e.mu.RLock()
defer e.mu.RUnlock()
if e.closed.Load() {
return nil, ErrEngineClosed
}
// Get all MemTables from the pool // Get all MemTables from the pool
memTables := e.memTablePool.GetMemTables() memTables := e.memTablePool.GetMemTables()
// Create a list of all iterator sources in newest-to-oldest order // Create a list of all iterators in newest-to-oldest order
sources := make([]IterSource, 0, len(memTables)+len(e.sstables)) iters := make([]Iterator, 0, len(memTables)+len(e.sstables))
// Add MemTables (active first, then immutables) // Add MemTables (active first, then immutables)
for i, table := range memTables { for _, table := range memTables {
sources = append(sources, &MemTableSource{ iters = append(iters, newMemTableIterAdapter(table.NewIterator()))
mem: table,
level: i, // Level corresponds to position in the list
})
} }
// Add SSTables (levels after MemTables) // Add SSTables (from newest to oldest)
baseLevel := len(memTables)
for i := len(e.sstables) - 1; i >= 0; i-- { for i := len(e.sstables) - 1; i >= 0; i-- {
sources = append(sources, &SSTableSource{ iters = append(iters, newSSTableIterAdapter(e.sstables[i].NewIterator()))
sst: e.sstables[i],
level: baseLevel + (len(e.sstables) - 1 - i),
})
} }
// Convert sources to actual iterators // Wrap in a bounded iterator (unbounded by default)
iters := make([]iterator.Iterator, 0, len(sources)) // If we have no iterators, use an empty one
for _, src := range sources { var baseIter Iterator
iters = append(iters, src.GetIterator()) if len(iters) == 0 {
} baseIter = &emptyIterator{}
} else if len(iters) == 1 {
// Create and return a hierarchical iterator that understands LSM-tree structure baseIter = iters[0]
return iterator.NewHierarchicalIterator(iters), nil
}
// GetRangeIterator returns an iterator over a specific key range
func (e *Engine) GetRangeIterator(start, end []byte) (Iterator, error) {
iter, err := e.GetIterator()
if err != nil {
return nil, err
}
// Position at the start key
if start != nil {
if !iter.Seek(start) {
// No keys in range
return iter, nil
}
} else { } else {
iter.SeekToFirst() // Create a simple chained iterator for now that checks each source in order
if !iter.Valid() { baseIter = &chainedIterator{iterators: iters}
// Empty database
return iter, nil
}
} }
// If we have an end key, wrap the iterator to limit the range return &boundedIterator{
if end != nil { Iterator: baseIter,
iter = &boundedIterator{ end: nil, // No end bound by default
Iterator: iter,
end: end,
} }
}
return iter, nil
} }
// chainedIterator is a simple iterator that checks multiple sources in order
type chainedIterator struct {
iterators []Iterator
current int
}
func (c *chainedIterator) SeekToFirst() {
if len(c.iterators) == 0 {
return
}
// Position all iterators at their first key
for _, iter := range c.iterators {
iter.SeekToFirst()
}
// Find the first valid iterator with the smallest key
c.current = -1
var smallestKey []byte
for i, iter := range c.iterators {
if !iter.Valid() {
continue
}
if c.current == -1 || bytes.Compare(iter.Key(), smallestKey) < 0 {
c.current = i
smallestKey = iter.Key()
}
}
}
func (c *chainedIterator) SeekToLast() {
if len(c.iterators) == 0 {
return
}
// Position all iterators at their last key
for _, iter := range c.iterators {
iter.SeekToLast()
}
// Find the first valid iterator with the largest key
c.current = -1
var largestKey []byte
for i, iter := range c.iterators {
if !iter.Valid() {
continue
}
if c.current == -1 || bytes.Compare(iter.Key(), largestKey) > 0 {
c.current = i
largestKey = iter.Key()
}
}
}
func (c *chainedIterator) Seek(target []byte) bool {
if len(c.iterators) == 0 {
return false
}
// Position all iterators at or after the target key
for _, iter := range c.iterators {
iter.Seek(target)
}
// Find the first valid iterator with the smallest key >= target
c.current = -1
var smallestKey []byte
for i, iter := range c.iterators {
if !iter.Valid() {
continue
}
if c.current == -1 || bytes.Compare(iter.Key(), smallestKey) < 0 {
c.current = i
smallestKey = iter.Key()
}
}
return c.current != -1
}
func (c *chainedIterator) Next() bool {
if !c.Valid() {
return false
}
// Get the current key
currentKey := c.iterators[c.current].Key()
// Advance all iterators that are at the current key
for _, iter := range c.iterators {
if iter.Valid() && bytes.Equal(iter.Key(), currentKey) {
iter.Next()
}
}
// Find the next valid iterator with the smallest key
c.current = -1
var smallestKey []byte
for i, iter := range c.iterators {
if !iter.Valid() {
continue
}
if c.current == -1 || bytes.Compare(iter.Key(), smallestKey) < 0 {
c.current = i
smallestKey = iter.Key()
}
}
return c.current != -1
}
func (c *chainedIterator) Key() []byte {
if !c.Valid() {
return nil
}
return c.iterators[c.current].Key()
}
func (c *chainedIterator) Value() []byte {
if !c.Valid() {
return nil
}
return c.iterators[c.current].Value()
}
func (c *chainedIterator) Valid() bool {
return c.current != -1 && c.current < len(c.iterators) && c.iterators[c.current].Valid()
}
func (c *chainedIterator) IsTombstone() bool {
if !c.Valid() {
return false
}
return c.iterators[c.current].IsTombstone()
}
// emptyIterator is an iterator that contains no entries
type emptyIterator struct{}
func (e *emptyIterator) SeekToFirst() {}
func (e *emptyIterator) SeekToLast() {}
func (e *emptyIterator) Seek(target []byte) bool { return false }
func (e *emptyIterator) Next() bool { return false }
func (e *emptyIterator) Key() []byte { return nil }
func (e *emptyIterator) Value() []byte { return nil }
func (e *emptyIterator) Valid() bool { return false }
func (e *emptyIterator) IsTombstone() bool { return false }
// Note: This is now replaced by the more comprehensive implementation in engine.go
// The hierarchical iterator code remains here to avoid impacting other code references
// boundedIterator wraps an iterator and limits it to a specific range // boundedIterator wraps an iterator and limits it to a specific range
type boundedIterator struct { type boundedIterator struct {
Iterator Iterator
start []byte
end []byte end []byte
} }
// SetBounds sets the start and end bounds for the iterator
func (b *boundedIterator) SetBounds(start, end []byte) {
// Make copies of the bounds to avoid external modification
if start != nil {
b.start = make([]byte, len(start))
copy(b.start, start)
} else {
b.start = nil
}
if end != nil {
b.end = make([]byte, len(end))
copy(b.end, end)
} else {
b.end = nil
}
// If we already have a valid position, check if it's still in bounds
if b.Iterator.Valid() {
b.checkBounds()
}
}
func (b *boundedIterator) SeekToFirst() { func (b *boundedIterator) SeekToFirst() {
if b.start != nil {
// If we have a start bound, seek to it
b.Iterator.Seek(b.start)
} else {
// Otherwise seek to the first key
b.Iterator.SeekToFirst() b.Iterator.SeekToFirst()
}
b.checkBounds()
}
func (b *boundedIterator) SeekToLast() {
if b.end != nil {
// If we have an end bound, seek to it
// The current implementation might not be efficient for finding the last
// key before the end bound, but it works for now
b.Iterator.Seek(b.end)
// If we landed exactly at the end bound, back up one
if b.Iterator.Valid() && bytes.Equal(b.Iterator.Key(), b.end) {
// We need to back up because end is exclusive
// This is inefficient but correct
b.Iterator.SeekToFirst()
// Scan to find the last key before the end bound
var lastKey []byte
for b.Iterator.Valid() && bytes.Compare(b.Iterator.Key(), b.end) < 0 {
lastKey = b.Iterator.Key()
b.Iterator.Next()
}
if lastKey != nil {
b.Iterator.Seek(lastKey)
} else {
// No keys before the end bound
b.Iterator.SeekToFirst()
// This will be marked invalid by checkBounds
}
}
} else {
// No end bound, seek to the last key
b.Iterator.SeekToLast()
}
// Verify we're within bounds
b.checkBounds() b.checkBounds()
} }
func (b *boundedIterator) Seek(target []byte) bool { func (b *boundedIterator) Seek(target []byte) bool {
// If target is before start bound, use start bound instead
if b.start != nil && bytes.Compare(target, b.start) < 0 {
target = b.start
}
// If target is at or after end bound, the seek will fail
if b.end != nil && bytes.Compare(target, b.end) >= 0 {
return false
}
if b.Iterator.Seek(target) { if b.Iterator.Seek(target) {
return b.checkBounds() return b.checkBounds()
} }
@ -659,12 +856,14 @@ func (b *boundedIterator) checkBounds() bool {
return false return false
} }
// Check if the current key is beyond the end bound // Check if the current key is before the start bound
if b.end != nil && len(b.end) > 0 { if b.start != nil && bytes.Compare(b.Iterator.Key(), b.start) < 0 {
// For a range query [start, end), the end key is exclusive
if bytes.Compare(b.Iterator.Key(), b.end) >= 0 {
return false return false
} }
// Check if the current key is beyond the end bound
if b.end != nil && bytes.Compare(b.Iterator.Key(), b.end) >= 0 {
return false
} }
return true return true

View File

@ -0,0 +1,129 @@
package transaction_test
import (
"fmt"
"os"
"git.canoozie.net/jer/go-storage/pkg/engine"
"git.canoozie.net/jer/go-storage/pkg/transaction"
)
func Example() {
// Create a temporary directory for the example
tempDir, err := os.MkdirTemp("", "transaction_example_*")
if err != nil {
fmt.Printf("Failed to create temp directory: %v\n", err)
return
}
defer os.RemoveAll(tempDir)
// Create a new storage engine
eng, err := engine.NewEngine(tempDir)
if err != nil {
fmt.Printf("Failed to create engine: %v\n", err)
return
}
defer eng.Close()
// Add some initial data directly to the engine
if err := eng.Put([]byte("user:1001"), []byte("Alice")); err != nil {
fmt.Printf("Failed to add user: %v\n", err)
return
}
if err := eng.Put([]byte("user:1002"), []byte("Bob")); err != nil {
fmt.Printf("Failed to add user: %v\n", err)
return
}
// Create a read-only transaction
readTx, err := transaction.NewTransaction(eng, transaction.ReadOnly)
if err != nil {
fmt.Printf("Failed to create read transaction: %v\n", err)
return
}
// Query data using the read transaction
value, err := readTx.Get([]byte("user:1001"))
if err != nil {
fmt.Printf("Failed to get user: %v\n", err)
} else {
fmt.Printf("Read transaction found user: %s\n", value)
}
// Create an iterator to scan all users
fmt.Println("All users (read transaction):")
iter := readTx.NewIterator()
for iter.SeekToFirst(); iter.Valid(); iter.Next() {
fmt.Printf(" %s: %s\n", iter.Key(), iter.Value())
}
// Commit the read transaction
if err := readTx.Commit(); err != nil {
fmt.Printf("Failed to commit read transaction: %v\n", err)
return
}
// Create a read-write transaction
writeTx, err := transaction.NewTransaction(eng, transaction.ReadWrite)
if err != nil {
fmt.Printf("Failed to create write transaction: %v\n", err)
return
}
// Modify data within the transaction
if err := writeTx.Put([]byte("user:1003"), []byte("Charlie")); err != nil {
fmt.Printf("Failed to add user: %v\n", err)
return
}
if err := writeTx.Delete([]byte("user:1001")); err != nil {
fmt.Printf("Failed to delete user: %v\n", err)
return
}
// Changes are visible within the transaction
fmt.Println("All users (write transaction before commit):")
iter = writeTx.NewIterator()
for iter.SeekToFirst(); iter.Valid(); iter.Next() {
fmt.Printf(" %s: %s\n", iter.Key(), iter.Value())
}
// But not in the main engine yet
val, err := eng.Get([]byte("user:1003"))
if err != nil {
fmt.Println("New user not yet visible in engine (correct)")
} else {
fmt.Printf("Unexpected: user visible before commit: %s\n", val)
}
// Commit the write transaction
if err := writeTx.Commit(); err != nil {
fmt.Printf("Failed to commit write transaction: %v\n", err)
return
}
// Now changes are visible in the engine
fmt.Println("All users (after commit):")
users := []string{"user:1001", "user:1002", "user:1003"}
for _, key := range users {
val, err := eng.Get([]byte(key))
if err != nil {
fmt.Printf(" %s: <deleted>\n", key)
} else {
fmt.Printf(" %s: %s\n", key, val)
}
}
// Output:
// Read transaction found user: Alice
// All users (read transaction):
// user:1001: Alice
// user:1002: Bob
// All users (write transaction before commit):
// user:1002: Bob
// user:1003: Charlie
// New user not yet visible in engine (correct)
// All users (after commit):
// user:1001: <deleted>
// user:1002: Bob
// user:1003: Charlie
}

View File

@ -0,0 +1,45 @@
package transaction
import (
"git.canoozie.net/jer/go-storage/pkg/engine"
)
// TransactionMode defines the transaction access mode (ReadOnly or ReadWrite)
type TransactionMode int
const (
// ReadOnly transactions only read from the database
ReadOnly TransactionMode = iota
// ReadWrite transactions can both read and write to the database
ReadWrite
)
// Transaction represents a database transaction that provides ACID guarantees
// It follows an SQLite-inspired concurrency model with reader-writer locks
type Transaction interface {
// Get retrieves a value for the given key
Get(key []byte) ([]byte, error)
// Put adds or updates a key-value pair (only for ReadWrite transactions)
Put(key, value []byte) error
// Delete removes a key (only for ReadWrite transactions)
Delete(key []byte) error
// NewIterator returns an iterator for all keys in the transaction
NewIterator() engine.Iterator
// NewRangeIterator returns an iterator limited to the given key range
NewRangeIterator(startKey, endKey []byte) engine.Iterator
// Commit makes all changes permanent
// For ReadOnly transactions, this just releases resources
Commit() error
// Rollback discards all transaction changes
Rollback() error
// IsReadOnly returns true if this is a read-only transaction
IsReadOnly() bool
}

View File

@ -0,0 +1,322 @@
package transaction
import (
"bytes"
"os"
"testing"
"git.canoozie.net/jer/go-storage/pkg/engine"
)
func setupTestEngine(t *testing.T) (*engine.Engine, string) {
// Create a temporary directory for the test
tempDir, err := os.MkdirTemp("", "transaction_test_*")
if err != nil {
t.Fatalf("Failed to create temp directory: %v", err)
}
// Create a new engine
eng, err := engine.NewEngine(tempDir)
if err != nil {
os.RemoveAll(tempDir)
t.Fatalf("Failed to create engine: %v", err)
}
return eng, tempDir
}
func TestReadOnlyTransaction(t *testing.T) {
eng, tempDir := setupTestEngine(t)
defer os.RemoveAll(tempDir)
defer eng.Close()
// Add some data directly to the engine
if err := eng.Put([]byte("key1"), []byte("value1")); err != nil {
t.Fatalf("Failed to put key1: %v", err)
}
if err := eng.Put([]byte("key2"), []byte("value2")); err != nil {
t.Fatalf("Failed to put key2: %v", err)
}
// Create a read-only transaction
tx, err := NewTransaction(eng, ReadOnly)
if err != nil {
t.Fatalf("Failed to create read-only transaction: %v", err)
}
// Test Get functionality
value, err := tx.Get([]byte("key1"))
if err != nil {
t.Fatalf("Failed to get key1: %v", err)
}
if !bytes.Equal(value, []byte("value1")) {
t.Errorf("Expected 'value1' but got '%s'", value)
}
// Test read-only constraints
err = tx.Put([]byte("key3"), []byte("value3"))
if err != ErrReadOnlyTransaction {
t.Errorf("Expected ErrReadOnlyTransaction but got: %v", err)
}
err = tx.Delete([]byte("key1"))
if err != ErrReadOnlyTransaction {
t.Errorf("Expected ErrReadOnlyTransaction but got: %v", err)
}
// Test iterator
iter := tx.NewIterator()
count := 0
for iter.SeekToFirst(); iter.Valid(); iter.Next() {
count++
}
if count != 2 {
t.Errorf("Expected 2 keys but found %d", count)
}
// Test commit (which for read-only just releases resources)
if err := tx.Commit(); err != nil {
t.Errorf("Failed to commit read-only transaction: %v", err)
}
// Transaction should be closed now
_, err = tx.Get([]byte("key1"))
if err != ErrTransactionClosed {
t.Errorf("Expected ErrTransactionClosed but got: %v", err)
}
}
func TestReadWriteTransaction(t *testing.T) {
eng, tempDir := setupTestEngine(t)
defer os.RemoveAll(tempDir)
defer eng.Close()
// Add initial data
if err := eng.Put([]byte("key1"), []byte("value1")); err != nil {
t.Fatalf("Failed to put key1: %v", err)
}
// Create a read-write transaction
tx, err := NewTransaction(eng, ReadWrite)
if err != nil {
t.Fatalf("Failed to create read-write transaction: %v", err)
}
// Add more data through the transaction
if err := tx.Put([]byte("key2"), []byte("value2")); err != nil {
t.Fatalf("Failed to put key2: %v", err)
}
if err := tx.Put([]byte("key3"), []byte("value3")); err != nil {
t.Fatalf("Failed to put key3: %v", err)
}
// Delete a key
if err := tx.Delete([]byte("key1")); err != nil {
t.Fatalf("Failed to delete key1: %v", err)
}
// Verify the changes are visible in the transaction but not in the engine yet
// Check via transaction
value, err := tx.Get([]byte("key2"))
if err != nil {
t.Errorf("Failed to get key2 from transaction: %v", err)
}
if !bytes.Equal(value, []byte("value2")) {
t.Errorf("Expected 'value2' but got '%s'", value)
}
// Check deleted key
_, err = tx.Get([]byte("key1"))
if err == nil {
t.Errorf("key1 should be deleted in transaction")
}
// Check directly in engine - changes shouldn't be visible yet
value, err = eng.Get([]byte("key2"))
if err == nil {
t.Errorf("key2 should not be visible in engine yet")
}
value, err = eng.Get([]byte("key1"))
if err != nil {
t.Errorf("key1 should still be visible in engine: %v", err)
}
// Commit the transaction
if err := tx.Commit(); err != nil {
t.Fatalf("Failed to commit transaction: %v", err)
}
// Now check engine again - changes should be visible
value, err = eng.Get([]byte("key2"))
if err != nil {
t.Errorf("key2 should be visible in engine after commit: %v", err)
}
if !bytes.Equal(value, []byte("value2")) {
t.Errorf("Expected 'value2' but got '%s'", value)
}
// Deleted key should be gone
value, err = eng.Get([]byte("key1"))
if err == nil {
t.Errorf("key1 should be deleted in engine after commit")
}
// Transaction should be closed
_, err = tx.Get([]byte("key2"))
if err != ErrTransactionClosed {
t.Errorf("Expected ErrTransactionClosed but got: %v", err)
}
}
func TestTransactionRollback(t *testing.T) {
eng, tempDir := setupTestEngine(t)
defer os.RemoveAll(tempDir)
defer eng.Close()
// Add initial data
if err := eng.Put([]byte("key1"), []byte("value1")); err != nil {
t.Fatalf("Failed to put key1: %v", err)
}
// Create a read-write transaction
tx, err := NewTransaction(eng, ReadWrite)
if err != nil {
t.Fatalf("Failed to create read-write transaction: %v", err)
}
// Add and modify data
if err := tx.Put([]byte("key2"), []byte("value2")); err != nil {
t.Fatalf("Failed to put key2: %v", err)
}
if err := tx.Delete([]byte("key1")); err != nil {
t.Fatalf("Failed to delete key1: %v", err)
}
// Rollback the transaction
if err := tx.Rollback(); err != nil {
t.Fatalf("Failed to rollback transaction: %v", err)
}
// Changes should not be visible in the engine
value, err := eng.Get([]byte("key1"))
if err != nil {
t.Errorf("key1 should still exist after rollback: %v", err)
}
if !bytes.Equal(value, []byte("value1")) {
t.Errorf("Expected 'value1' but got '%s'", value)
}
// key2 should not exist
_, err = eng.Get([]byte("key2"))
if err == nil {
t.Errorf("key2 should not exist after rollback")
}
// Transaction should be closed
_, err = tx.Get([]byte("key1"))
if err != ErrTransactionClosed {
t.Errorf("Expected ErrTransactionClosed but got: %v", err)
}
}
func TestTransactionIterator(t *testing.T) {
eng, tempDir := setupTestEngine(t)
defer os.RemoveAll(tempDir)
defer eng.Close()
// Add initial data
if err := eng.Put([]byte("key1"), []byte("value1")); err != nil {
t.Fatalf("Failed to put key1: %v", err)
}
if err := eng.Put([]byte("key3"), []byte("value3")); err != nil {
t.Fatalf("Failed to put key3: %v", err)
}
if err := eng.Put([]byte("key5"), []byte("value5")); err != nil {
t.Fatalf("Failed to put key5: %v", err)
}
// Create a read-write transaction
tx, err := NewTransaction(eng, ReadWrite)
if err != nil {
t.Fatalf("Failed to create read-write transaction: %v", err)
}
// Add and modify data in transaction
if err := tx.Put([]byte("key2"), []byte("value2")); err != nil {
t.Fatalf("Failed to put key2: %v", err)
}
if err := tx.Put([]byte("key4"), []byte("value4")); err != nil {
t.Fatalf("Failed to put key4: %v", err)
}
if err := tx.Delete([]byte("key3")); err != nil {
t.Fatalf("Failed to delete key3: %v", err)
}
// Use iterator to check order and content
iter := tx.NewIterator()
expected := []struct {
key string
value string
}{
{"key1", "value1"},
{"key2", "value2"},
{"key4", "value4"},
{"key5", "value5"},
}
i := 0
for iter.SeekToFirst(); iter.Valid(); iter.Next() {
if i >= len(expected) {
t.Errorf("Too many keys in iterator")
break
}
if !bytes.Equal(iter.Key(), []byte(expected[i].key)) {
t.Errorf("Expected key '%s' but got '%s'", expected[i].key, string(iter.Key()))
}
if !bytes.Equal(iter.Value(), []byte(expected[i].value)) {
t.Errorf("Expected value '%s' but got '%s'", expected[i].value, string(iter.Value()))
}
i++
}
if i != len(expected) {
t.Errorf("Expected %d keys but found %d", len(expected), i)
}
// Test range iterator
rangeIter := tx.NewRangeIterator([]byte("key2"), []byte("key5"))
expected = []struct {
key string
value string
}{
{"key2", "value2"},
{"key4", "value4"},
}
i = 0
for rangeIter.SeekToFirst(); rangeIter.Valid(); rangeIter.Next() {
if i >= len(expected) {
t.Errorf("Too many keys in range iterator")
break
}
if !bytes.Equal(rangeIter.Key(), []byte(expected[i].key)) {
t.Errorf("Expected key '%s' but got '%s'", expected[i].key, string(rangeIter.Key()))
}
if !bytes.Equal(rangeIter.Value(), []byte(expected[i].value)) {
t.Errorf("Expected value '%s' but got '%s'", expected[i].value, string(rangeIter.Value()))
}
i++
}
if i != len(expected) {
t.Errorf("Expected %d keys in range but found %d", len(expected), i)
}
// Commit and verify results
if err := tx.Commit(); err != nil {
t.Fatalf("Failed to commit transaction: %v", err)
}
}

571
pkg/transaction/tx_impl.go Normal file
View File

@ -0,0 +1,571 @@
package transaction
import (
"bytes"
"errors"
"sync"
"sync/atomic"
"git.canoozie.net/jer/go-storage/pkg/engine"
"git.canoozie.net/jer/go-storage/pkg/transaction/txbuffer"
"git.canoozie.net/jer/go-storage/pkg/wal"
)
// Common errors for transaction operations
var (
ErrReadOnlyTransaction = errors.New("cannot write to a read-only transaction")
ErrTransactionClosed = errors.New("transaction already committed or rolled back")
)
// EngineTransaction implements a SQLite-inspired transaction using reader-writer locks
type EngineTransaction struct {
// Reference to the main engine
engine *engine.Engine
// Transaction mode (ReadOnly or ReadWrite)
mode TransactionMode
// Buffer for transaction operations
buffer *txbuffer.TxBuffer
// For read-write transactions, tracks if we have the write lock
writeLock *sync.RWMutex
// Tracks if the transaction is still active
active int32
// For read-only transactions, ensures we release the read lock exactly once
readUnlocked int32
}
// NewTransaction creates a new transaction
func NewTransaction(eng *engine.Engine, mode TransactionMode) (*EngineTransaction, error) {
tx := &EngineTransaction{
engine: eng,
mode: mode,
buffer: txbuffer.NewTxBuffer(),
active: 1,
}
// For read-write transactions, we need a write lock
if mode == ReadWrite {
// Get the engine's lock - we'll use the same one for all transactions
lock := eng.GetRWLock()
// Acquire the write lock
lock.Lock()
tx.writeLock = lock
} else {
// For read-only transactions, just acquire a read lock
lock := eng.GetRWLock()
lock.RLock()
tx.writeLock = lock
}
return tx, nil
}
// Get retrieves a value for the given key
func (tx *EngineTransaction) Get(key []byte) ([]byte, error) {
if atomic.LoadInt32(&tx.active) == 0 {
return nil, ErrTransactionClosed
}
// First check the transaction buffer for any pending changes
if val, found := tx.buffer.Get(key); found {
if val == nil {
// This is a deletion marker
return nil, engine.ErrKeyNotFound
}
return val, nil
}
// Not in the buffer, get from the underlying engine
return tx.engine.Get(key)
}
// Put adds or updates a key-value pair
func (tx *EngineTransaction) Put(key, value []byte) error {
if atomic.LoadInt32(&tx.active) == 0 {
return ErrTransactionClosed
}
if tx.mode == ReadOnly {
return ErrReadOnlyTransaction
}
// Buffer the change - it will be applied on commit
tx.buffer.Put(key, value)
return nil
}
// Delete removes a key
func (tx *EngineTransaction) Delete(key []byte) error {
if atomic.LoadInt32(&tx.active) == 0 {
return ErrTransactionClosed
}
if tx.mode == ReadOnly {
return ErrReadOnlyTransaction
}
// Buffer the deletion - it will be applied on commit
tx.buffer.Delete(key)
return nil
}
// NewIterator returns an iterator that first reads from the transaction buffer
// and then from the underlying engine
func (tx *EngineTransaction) NewIterator() engine.Iterator {
if atomic.LoadInt32(&tx.active) == 0 {
// Return an empty iterator if transaction is closed
return &emptyIterator{}
}
// Get the engine iterator for the entire keyspace
engineIter, err := tx.engine.GetIterator()
if err != nil {
// If we can't get an engine iterator, return a buffer-only iterator
return tx.buffer.NewIterator()
}
// If there are no changes in the buffer, just use the engine's iterator
if tx.buffer.Size() == 0 {
return engineIter
}
// Create a transaction iterator that merges buffer changes with engine state
return newTransactionIterator(tx.buffer, engineIter)
}
// NewRangeIterator returns an iterator limited to a specific key range
func (tx *EngineTransaction) NewRangeIterator(startKey, endKey []byte) engine.Iterator {
if atomic.LoadInt32(&tx.active) == 0 {
// Return an empty iterator if transaction is closed
return &emptyIterator{}
}
// Get the engine iterator for the range
engineIter, err := tx.engine.GetRangeIterator(startKey, endKey)
if err != nil {
// If we can't get an engine iterator, use a buffer-only iterator
// and apply range bounds to it
bufferIter := tx.buffer.NewIterator()
return newRangeIterator(bufferIter, startKey, endKey)
}
// If there are no changes in the buffer, just use the engine's range iterator
if tx.buffer.Size() == 0 {
return engineIter
}
// Create a transaction iterator that merges buffer changes with engine state
mergedIter := newTransactionIterator(tx.buffer, engineIter)
// Apply range constraints
return newRangeIterator(mergedIter, startKey, endKey)
}
// transactionIterator merges a transaction buffer with the engine state
type transactionIterator struct {
bufferIter *txbuffer.Iterator
engineIter engine.Iterator
currentKey []byte
isValid bool
isBuffer bool // true if current position is from buffer
}
// newTransactionIterator creates a new iterator that merges buffer and engine state
func newTransactionIterator(buffer *txbuffer.TxBuffer, engineIter engine.Iterator) *transactionIterator {
return &transactionIterator{
bufferIter: buffer.NewIterator(),
engineIter: engineIter,
isValid: false,
}
}
// SeekToFirst positions at the first key in either the buffer or engine
func (it *transactionIterator) SeekToFirst() {
it.bufferIter.SeekToFirst()
it.engineIter.SeekToFirst()
it.selectNext()
}
// SeekToLast positions at the last key in either the buffer or engine
func (it *transactionIterator) SeekToLast() {
it.bufferIter.SeekToLast()
it.engineIter.SeekToLast()
it.selectPrev()
}
// Seek positions at the first key >= target
func (it *transactionIterator) Seek(target []byte) bool {
it.bufferIter.Seek(target)
it.engineIter.Seek(target)
it.selectNext()
return it.isValid
}
// Next advances to the next key
func (it *transactionIterator) Next() bool {
// If we're currently at a buffer key, advance it
if it.isValid && it.isBuffer {
it.bufferIter.Next()
} else if it.isValid {
// If we're at an engine key, advance it
it.engineIter.Next()
}
it.selectNext()
return it.isValid
}
// Key returns the current key
func (it *transactionIterator) Key() []byte {
if !it.isValid {
return nil
}
return it.currentKey
}
// Value returns the current value
func (it *transactionIterator) Value() []byte {
if !it.isValid {
return nil
}
if it.isBuffer {
return it.bufferIter.Value()
}
return it.engineIter.Value()
}
// Valid returns true if the iterator is valid
func (it *transactionIterator) Valid() bool {
return it.isValid
}
// IsTombstone returns true if the current entry is a deletion marker
func (it *transactionIterator) IsTombstone() bool {
if !it.isValid {
return false
}
if it.isBuffer {
return it.bufferIter.IsTombstone()
}
return it.engineIter.IsTombstone()
}
// selectNext finds the next valid position in the merged view
func (it *transactionIterator) selectNext() {
// First check if either iterator is valid
bufferValid := it.bufferIter.Valid()
engineValid := it.engineIter.Valid()
if !bufferValid && !engineValid {
// Neither is valid, so we're done
it.isValid = false
it.currentKey = nil
it.isBuffer = false
return
}
if !bufferValid {
// Only engine is valid, so use it
it.isValid = true
it.currentKey = it.engineIter.Key()
it.isBuffer = false
return
}
if !engineValid {
// Only buffer is valid, so use it
// Check if this is a deletion marker
if it.bufferIter.IsTombstone() {
// Skip the tombstone and move to the next valid position
it.bufferIter.Next()
it.selectNext() // Recursively find the next valid position
return
}
it.isValid = true
it.currentKey = it.bufferIter.Key()
it.isBuffer = true
return
}
// Both are valid, so compare keys
bufferKey := it.bufferIter.Key()
engineKey := it.engineIter.Key()
cmp := bytes.Compare(bufferKey, engineKey)
if cmp < 0 {
// Buffer key is smaller, use it
// Check if this is a deletion marker
if it.bufferIter.IsTombstone() {
// Skip the tombstone
it.bufferIter.Next()
it.selectNext() // Recursively find the next valid position
return
}
it.isValid = true
it.currentKey = bufferKey
it.isBuffer = true
} else if cmp > 0 {
// Engine key is smaller, use it
it.isValid = true
it.currentKey = engineKey
it.isBuffer = false
} else {
// Keys are the same, buffer takes precedence
// If buffer has a tombstone, we need to skip both
if it.bufferIter.IsTombstone() {
// Skip both iterators for this key
it.bufferIter.Next()
it.engineIter.Next()
it.selectNext() // Recursively find the next valid position
return
}
it.isValid = true
it.currentKey = bufferKey
it.isBuffer = true
// Need to advance engine iterator to avoid duplication
it.engineIter.Next()
}
}
// selectPrev finds the previous valid position in the merged view
// This is a fairly inefficient implementation for now
func (it *transactionIterator) selectPrev() {
// This implementation is not efficient but works for now
// We actually just rebuild the full ordering and scan to the end
it.SeekToFirst()
// If already invalid, just return
if !it.isValid {
return
}
// Scan to the last key
var lastKey []byte
var isBuffer bool
for it.isValid {
lastKey = it.currentKey
isBuffer = it.isBuffer
it.Next()
}
// Reposition at the last key we found
if lastKey != nil {
it.isValid = true
it.currentKey = lastKey
it.isBuffer = isBuffer
}
}
// rangeIterator applies range bounds to an existing iterator
type rangeIterator struct {
engine.Iterator
startKey []byte
endKey []byte
}
// newRangeIterator creates a new range-limited iterator
func newRangeIterator(iter engine.Iterator, startKey, endKey []byte) *rangeIterator {
ri := &rangeIterator{
Iterator: iter,
}
// Make copies of bounds
if startKey != nil {
ri.startKey = make([]byte, len(startKey))
copy(ri.startKey, startKey)
}
if endKey != nil {
ri.endKey = make([]byte, len(endKey))
copy(ri.endKey, endKey)
}
return ri
}
// SeekToFirst seeks to the range start or the first key
func (ri *rangeIterator) SeekToFirst() {
if ri.startKey != nil {
ri.Iterator.Seek(ri.startKey)
} else {
ri.Iterator.SeekToFirst()
}
ri.checkBounds()
}
// Seek seeks to the target or range start
func (ri *rangeIterator) Seek(target []byte) bool {
// If target is before range start, use range start
if ri.startKey != nil && bytes.Compare(target, ri.startKey) < 0 {
target = ri.startKey
}
// If target is at or after range end, fail
if ri.endKey != nil && bytes.Compare(target, ri.endKey) >= 0 {
return false
}
if ri.Iterator.Seek(target) {
return ri.checkBounds()
}
return false
}
// Next advances to the next key within bounds
func (ri *rangeIterator) Next() bool {
if !ri.checkBounds() {
return false
}
if !ri.Iterator.Next() {
return false
}
return ri.checkBounds()
}
// Valid checks if the iterator is valid and within bounds
func (ri *rangeIterator) Valid() bool {
return ri.Iterator.Valid() && ri.checkBounds()
}
// checkBounds ensures the current position is within range bounds
func (ri *rangeIterator) checkBounds() bool {
if !ri.Iterator.Valid() {
return false
}
// Check start bound
if ri.startKey != nil && bytes.Compare(ri.Iterator.Key(), ri.startKey) < 0 {
return false
}
// Check end bound
if ri.endKey != nil && bytes.Compare(ri.Iterator.Key(), ri.endKey) >= 0 {
return false
}
return true
}
// Commit makes all changes permanent
func (tx *EngineTransaction) Commit() error {
// Only proceed if the transaction is still active
if !atomic.CompareAndSwapInt32(&tx.active, 1, 0) {
return ErrTransactionClosed
}
var err error
// For read-only transactions, just release the read lock
if tx.mode == ReadOnly {
tx.releaseReadLock()
return nil
}
// For read-write transactions, apply the changes
if tx.buffer.Size() > 0 {
// Get operations from the buffer
ops := tx.buffer.Operations()
// Create a batch for all operations
walBatch := make([]*wal.Entry, 0, len(ops))
// Build WAL entries for each operation
for _, op := range ops {
if op.IsDelete {
// Create delete entry
walBatch = append(walBatch, &wal.Entry{
Type: wal.OpTypeDelete,
Key: op.Key,
})
} else {
// Create put entry
walBatch = append(walBatch, &wal.Entry{
Type: wal.OpTypePut,
Key: op.Key,
Value: op.Value,
})
}
}
// Apply the batch atomically
err = tx.engine.ApplyBatch(walBatch)
}
// Release the write lock
if tx.writeLock != nil {
tx.writeLock.Unlock()
tx.writeLock = nil
}
return err
}
// Rollback discards all transaction changes
func (tx *EngineTransaction) Rollback() error {
// Only proceed if the transaction is still active
if !atomic.CompareAndSwapInt32(&tx.active, 1, 0) {
return ErrTransactionClosed
}
// Clear the buffer
tx.buffer.Clear()
// Release locks based on transaction mode
if tx.mode == ReadOnly {
tx.releaseReadLock()
} else {
// Release write lock
if tx.writeLock != nil {
tx.writeLock.Unlock()
tx.writeLock = nil
}
}
return nil
}
// IsReadOnly returns true if this is a read-only transaction
func (tx *EngineTransaction) IsReadOnly() bool {
return tx.mode == ReadOnly
}
// releaseReadLock safely releases the read lock for read-only transactions
func (tx *EngineTransaction) releaseReadLock() {
// Only release once to avoid panics from multiple unlocks
if atomic.CompareAndSwapInt32(&tx.readUnlocked, 0, 1) {
if tx.writeLock != nil {
tx.writeLock.RUnlock()
tx.writeLock = nil
}
}
}
// Simple empty iterator implementation for closed transactions
type emptyIterator struct{}
func (e *emptyIterator) SeekToFirst() {}
func (e *emptyIterator) SeekToLast() {}
func (e *emptyIterator) Seek([]byte) bool { return false }
func (e *emptyIterator) Next() bool { return false }
func (e *emptyIterator) Key() []byte { return nil }
func (e *emptyIterator) Value() []byte { return nil }
func (e *emptyIterator) Valid() bool { return false }
func (e *emptyIterator) IsTombstone() bool { return false }

View File

@ -0,0 +1,270 @@
package txbuffer
import (
"bytes"
"sync"
)
// Operation represents a single transaction operation (put or delete)
type Operation struct {
// Key is the key being operated on
Key []byte
// Value is the value to set (nil for delete operations)
Value []byte
// IsDelete is true for deletion operations
IsDelete bool
}
// TxBuffer maintains a buffer of transaction operations before they are committed
type TxBuffer struct {
// Buffers all operations for the transaction
operations []Operation
// Cache of key -> value for fast lookups without scanning the operation list
// Maps to nil for deletion markers
cache map[string][]byte
// Protects against concurrent access
mu sync.RWMutex
}
// NewTxBuffer creates a new transaction buffer
func NewTxBuffer() *TxBuffer {
return &TxBuffer{
operations: make([]Operation, 0, 16),
cache: make(map[string][]byte),
}
}
// Put adds a key-value pair to the transaction buffer
func (b *TxBuffer) Put(key, value []byte) {
b.mu.Lock()
defer b.mu.Unlock()
// Create a safe copy of key and value to prevent later modifications
keyCopy := make([]byte, len(key))
copy(keyCopy, key)
valueCopy := make([]byte, len(value))
copy(valueCopy, value)
// Add to operations list
b.operations = append(b.operations, Operation{
Key: keyCopy,
Value: valueCopy,
IsDelete: false,
})
// Update cache
b.cache[string(keyCopy)] = valueCopy
}
// Delete marks a key as deleted in the transaction buffer
func (b *TxBuffer) Delete(key []byte) {
b.mu.Lock()
defer b.mu.Unlock()
// Create a safe copy of the key
keyCopy := make([]byte, len(key))
copy(keyCopy, key)
// Add to operations list
b.operations = append(b.operations, Operation{
Key: keyCopy,
Value: nil,
IsDelete: true,
})
// Update cache to mark key as deleted (nil value)
b.cache[string(keyCopy)] = nil
}
// Get retrieves a value from the transaction buffer
// Returns (value, true) if found, (nil, false) if not found
func (b *TxBuffer) Get(key []byte) ([]byte, bool) {
b.mu.RLock()
defer b.mu.RUnlock()
value, found := b.cache[string(key)]
return value, found
}
// Has returns true if the key exists in the buffer, even if it's marked for deletion
func (b *TxBuffer) Has(key []byte) bool {
b.mu.RLock()
defer b.mu.RUnlock()
_, found := b.cache[string(key)]
return found
}
// IsDeleted returns true if the key is marked for deletion in the buffer
func (b *TxBuffer) IsDeleted(key []byte) bool {
b.mu.RLock()
defer b.mu.RUnlock()
value, found := b.cache[string(key)]
return found && value == nil
}
// Operations returns the list of all operations in the transaction
// This is used when committing the transaction
func (b *TxBuffer) Operations() []Operation {
b.mu.RLock()
defer b.mu.RUnlock()
// Return a copy to prevent modification
result := make([]Operation, len(b.operations))
copy(result, b.operations)
return result
}
// Clear empties the transaction buffer
// Used when rolling back a transaction
func (b *TxBuffer) Clear() {
b.mu.Lock()
defer b.mu.Unlock()
b.operations = b.operations[:0]
b.cache = make(map[string][]byte)
}
// Size returns the number of operations in the buffer
func (b *TxBuffer) Size() int {
b.mu.RLock()
defer b.mu.RUnlock()
return len(b.operations)
}
// Iterator returns an iterator over the transaction buffer
type Iterator struct {
// The buffer this iterator is iterating over
buffer *TxBuffer
// The current position in the keys slice
pos int
// Sorted list of keys
keys []string
}
// NewIterator creates a new iterator over the transaction buffer
func (b *TxBuffer) NewIterator() *Iterator {
b.mu.RLock()
defer b.mu.RUnlock()
// Get all keys and sort them
keys := make([]string, 0, len(b.cache))
for k := range b.cache {
keys = append(keys, k)
}
// Sort the keys
keys = sortStrings(keys)
return &Iterator{
buffer: b,
pos: -1, // Start before the first position
keys: keys,
}
}
// SeekToFirst positions the iterator at the first key
func (it *Iterator) SeekToFirst() {
it.pos = 0
}
// SeekToLast positions the iterator at the last key
func (it *Iterator) SeekToLast() {
if len(it.keys) > 0 {
it.pos = len(it.keys) - 1
} else {
it.pos = 0
}
}
// Seek positions the iterator at the first key >= target
func (it *Iterator) Seek(target []byte) bool {
targetStr := string(target)
// Binary search would be more efficient for large sets
for i, key := range it.keys {
if key >= targetStr {
it.pos = i
return true
}
}
// Not found - position past the end
it.pos = len(it.keys)
return false
}
// Next advances the iterator to the next key
func (it *Iterator) Next() bool {
if it.pos < 0 {
it.pos = 0
return it.pos < len(it.keys)
}
it.pos++
return it.pos < len(it.keys)
}
// Key returns the current key
func (it *Iterator) Key() []byte {
if !it.Valid() {
return nil
}
return []byte(it.keys[it.pos])
}
// Value returns the current value
func (it *Iterator) Value() []byte {
if !it.Valid() {
return nil
}
// Get the value from the buffer
it.buffer.mu.RLock()
defer it.buffer.mu.RUnlock()
value := it.buffer.cache[it.keys[it.pos]]
return value // Returns nil for deletion markers
}
// Valid returns true if the iterator is positioned at a valid entry
func (it *Iterator) Valid() bool {
return it.pos >= 0 && it.pos < len(it.keys)
}
// IsTombstone returns true if the current entry is a deletion marker
func (it *Iterator) IsTombstone() bool {
if !it.Valid() {
return false
}
it.buffer.mu.RLock()
defer it.buffer.mu.RUnlock()
// The value is nil for tombstones in our cache implementation
value := it.buffer.cache[it.keys[it.pos]]
return value == nil
}
// Simple implementation of string sorting for the iterator
func sortStrings(strings []string) []string {
// In-place sort
for i := 0; i < len(strings); i++ {
for j := i + 1; j < len(strings); j++ {
if bytes.Compare([]byte(strings[i]), []byte(strings[j])) > 0 {
strings[i], strings[j] = strings[j], strings[i]
}
}
}
return strings
}

View File

@ -362,6 +362,72 @@ func (w *WAL) Sync() error {
return w.syncLocked() return w.syncLocked()
} }
// AppendBatch adds a batch of entries to the WAL
func (w *WAL) AppendBatch(entries []*Entry) (uint64, error) {
w.mu.Lock()
defer w.mu.Unlock()
if w.closed {
return 0, ErrWALClosed
}
if len(entries) == 0 {
return w.nextSequence, nil
}
// Start sequence number for the batch
startSeqNum := w.nextSequence
// Record this as a batch operation with the number of entries
batchHeader := make([]byte, 1+8+4) // opType(1) + seqNum(8) + entryCount(4)
offset := 0
// Write operation type (batch)
batchHeader[offset] = OpTypeBatch
offset++
// Write sequence number
binary.LittleEndian.PutUint64(batchHeader[offset:offset+8], startSeqNum)
offset += 8
// Write entry count
binary.LittleEndian.PutUint32(batchHeader[offset:offset+4], uint32(len(entries)))
// Write the batch header
if err := w.writeRawRecord(RecordTypeFull, batchHeader); err != nil {
return 0, fmt.Errorf("failed to write batch header: %w", err)
}
// Process each entry in the batch
for i, entry := range entries {
// Assign sequential sequence numbers to each entry
seqNum := startSeqNum + uint64(i)
// Write the entry
if entry.Value == nil {
// Deletion
if err := w.writeRecord(RecordTypeFull, OpTypeDelete, seqNum, entry.Key, nil); err != nil {
return 0, fmt.Errorf("failed to write entry %d: %w", i, err)
}
} else {
// Put
if err := w.writeRecord(RecordTypeFull, OpTypePut, seqNum, entry.Key, entry.Value); err != nil {
return 0, fmt.Errorf("failed to write entry %d: %w", i, err)
}
}
}
// Update next sequence number
w.nextSequence = startSeqNum + uint64(len(entries))
// Sync if needed
if err := w.maybeSync(); err != nil {
return 0, err
}
return startSeqNum, nil
}
// Close closes the WAL // Close closes the WAL
func (w *WAL) Close() error { func (w *WAL) Close() error {
w.mu.Lock() w.mu.Lock()